

The recent morphological evolution of Pagham Harbour entrance and the cause of the breach to Church Norton spit in Winter 2016

Emma Harris 19th January 2018

Outline

- 1. Aims and objectives
- 2. Site introduction
- 3. Importance of study
- 4. Methodology
- 5. Results
- 6. Key findings
- 7. What happened next?

1. Aims and Objectives

AIM: To determine how Pagham Harbour entrance and the Church Norton spit evolved around the time of the breach in 2016 and to identify the cause(s) of this breach.

OBJECTIVES:

- To assess the rate of volume change of sediment across Pagham Harbour entrance, before and after the breach.
- To examine the nearshore water level and wave climate in CoastalTools, both before and after the breach, to identify storm activity.
- To assess the volume changes observed in baseline profiles, before and after the breach in CoastalTools.

2. Pagham Harbour - Site introduction

- Ebb dominant tidal inlet
- Double spit system
- Located to the east of Selsey Bill
- Nationally and internationally designated site for habitats and species:
 - Ramsar
 - Special Protection Area (SPA)
 - Site of Specific Scientific Interest (SSSI)

3. Importance of study

- Extensive morphological changes over the past 10 years.
- Limited success with management inventions (Training wall)
- Implications on the shingle supply to Pagham frontage.
- Erosion threat to properties situated along Pagham beach.

4. Methodology

1. GIS analysis:

- 27/01/2015 to 03/03/2017

4. Methodology

- 2. Wave climate analysis
 - Rustington and Bracklesham Bay wave buoys.
 - Period from 01/01/2012 to 31/05/2017.
 - Significant wave height, wave period, wave direction and inshore wave energy flux.
- 3. Baseline profile analysis
- 4. Longshore drift model
- 5. Overtopping and overwash model

CoastalTools

5. Results – Volumetric analysis

- Decrease in the total sediment volume in cells E, F and G above -3 m OD since 2014.
- No significant volume changes observed across cells A to D since 2014.

5. Results – Volumetric analysis

Reduction in spit sub-cells F and G prior to the breach event.

5. Results – Contour migration

 Narrow 3m contour present leading up to breach event.

■ By **29/01/2016**, 3m contour became discontinuous.

■ By **03/03/2017** the 3m contour of detached spit had fused to downdrift shoreline.

5. Results – Baseline profiles

- Reduction in profiles P4d01397 and P4d01398A since 2014.
- Increase in profile **P4d01387** immediately downdrift post-breach.

5. Results – Wave climate

Mean significant wave height:

- Winter 2013/2014: **1.61 m**

- Winter 2015/2016: **1.46 m**

Mean inshore energy flux:

- Winter 2013/2014: **5.85 x 10 ³ J/ms**

- Winter 2015/2016: **4.31 x 10 ³ J/ms**

Mean wave direction was similar for winter 2013/2014 and 2015/2016.

5. Results – Littoral drift potential

- Largest total annual drift volume was shown in 2014 measuring 3.79x10⁴ m³/yr.
- Reduction in drift potential since 2014.

Year	Total Annual Drift Volume (m³/yr)
2008×	1.88 × 10 ⁴
2009×	2.35×10^4
2010×	1.21 × 10 ⁴
2011×	1.51 × 10 ⁴
2012	1.44 × 10 ⁴
2013×	2.80×10^4
2014	3.79×10^4
2015	2.71 × 10 ⁴
2016	2.23 × 10 ⁴
2017*	5.34×10^{3}

^{*} January to May only; x value obtained from Townend (2015)

5. Results – Overtopping and overwash model

- Progressive barrier breakdown and barrier pre-conditioning ahead of Winter 2015/2016.
- Overtopping events indicated throughout 2014 and 2015.
- Positive feedback system.
- Overwashing events occurred once the critical crest level threshold reached.

6. Key findings

- A decrease in volume over a central section of the spit since 2014.
- The detached Church Norton spit migrated downdrift and supplied the immediate Pagham area with shingle.
- No evidence of southern spit reforming yet.
- Winter storm events of 2013/2014 appeared to act as a trigger to the breach in 2016.
- Overtopping events throughout 2014 and 2015 left spit in vulnerable morphological position ahead of winter 2015/2016.
- Crest unable to recover due to low littoral drift rates indicated after 2014.

7. What happened next..

